Bi-stable model of risk interest rate. Krivosheev Oleg Igorevich, chair of Applied Mathematics MESI,

8-926-593-75-46, okrivosheev@mail.ru

Variables θ – an amount of dept per unit of productive capital, $\overline{\theta} = 1 - \theta$ – own capital, variable θ is slow, r - risk, $\hat{r} = \frac{r}{d}$ - normalized risk. b - risky bank interest rate $b = b_0 + r$, where b_0 - risk less interest rate: for the sake of simplicity $b_0 = 0$, and thus b = r.

Parameters. τ - time of refinance of debt, i_F - internal rate of return of capital, i_{ab} internal rate of return of current capital, d – depreciation rate, ω – ratio of current capital to the total capital, $\sigma = 1 - \omega$ - ratio of long term capital to the total capital, $\sigma = i/d$ dimensionless rate of return. If r - is an intensity of r_{n+1} Рис. 1. the Poisson flow of bankruptcy, than $t_b = r^{-1}$ - is an average time before the bankruptcy, at the level of risk rate r=b, time of bankruptcy may be estimated as a time of achieving of boarder where $\theta = \sigma + 1$ (or $\theta = 1$) $\frac{d}{dt}\theta = \theta b - (i_F + d) + \theta d$, let us simply suppose that the velocity of dept changing or growth is constant $v = \theta b - (i_F + d) + \theta d$, than, using $r = \frac{1}{t_e}$ we obtain a discrete mapping of interest into itself $r_{n+1} = \frac{\theta}{1 + \sigma_0 - \theta} r_n - d$. Since risk is not negative one should be rewrited $r_{n+1} = \max(0, \frac{\theta}{1 + \sigma_0 - \theta}r_n - d)$. Risk interest rate should be bounded with $r_{\text{max}} = ((\sigma + 1)\frac{1}{\omega} - 1)d$, - the rate of return of current assets: $r_{n+1} = \min(\max(0, \frac{\theta}{1 + \sigma_0 - \theta}r_n - d), r_{\max})$. Equilibriums are the following $r = r_{\max}$ - crisis, $r_{us} = \frac{1 + \sigma_0 - \theta}{2\theta - 1 - \sigma_0} d$ unstable & r = 0 is the preferable one. They meet $r_{n+1} = r_n$. There is no Crisis is very Рис. 2. probable crisis equilibrium if $\sigma + 1 > \theta + \sqrt{\theta^2 - \omega \theta}$, at plane **ω=**1

crisis equilibrium if $\sigma + 1 > \theta + \sqrt{\theta^2} - \omega\theta$, at plane $\sigma=0$ this means that $\omega > 2 - \theta^{-1}$, - see curved line in Fig 2. Lower equilibrium is the main one or have hire potential when we see $\sigma > 2\theta - 1 - \omega$ or $\sigma > \overline{\omega} - 2\overline{\theta}$ (this is solution for condition $2r_{us} > r_{max}$). One may consider it as a boarder of financial stability of economy & single enterprise.

