Bi-stable model of risk interest rate. Krivosheev Oleg Igorevich, chair of Applied Mathematics MESI,

8-926-593-75-46, okrivosheev@mail.ru

Variables θ - an amount of dept per unit of productive capital, $\bar{\theta}=1-\theta-$ own capital, variable θ is slow, r - risk, $\hat{r}=\frac{r}{d}$ - normalized risk. b - risky bank interest rate $b=b_{0}+r$, where b_{0} - risk less interest rate: for the sake of simplicity $b_{0}=0$, and thus $b=r$.

Parameters. τ - time of refinance of debt, i_{F} - internal rate of return of capital, $i_{o b}$ internal rate of return of current capital, d-depreciation rate, ω - ratio of current capital to the total capital, $\varpi=1-\omega$ - ratio of long term capital to the total capital, $\sigma=i / d$ dimensionless rate of return. If r - is an intensity of the Poisson flow of bankruptcy, than $t_{b}=r^{-1}$ - is an average time before the bankruptcy, at the level of risk rate $\mathrm{r}=\mathrm{b}$, time of bankruptcy may be estimated as a time of achieving of boarder where $\theta=\sigma+1$ (or simply $\quad \theta=1) \quad \frac{d}{d t} \theta=\theta b-\left(i_{F}+d\right)+\theta d$, let us suppose that the velocity of dept changing or growth is constant $v=\theta b-\left(i_{F}+d\right)+\theta d$, than, using $r=\frac{1}{t_{b}}$
 we obtain a discrete mapping of interest into itself $r_{n+1}=\frac{\theta}{1+\sigma_{0}-\theta} r_{n}-d$. Since risk is not negative one should be rewrited $r_{n+1}=\max \left(0, \frac{\theta}{1+\sigma_{0}-\theta} r_{n}-d\right)$. Risk interest rate should be bounded with $\quad r_{\max }=\left((\sigma+1) \frac{1}{\omega}-1\right) d, \quad$ the rate of return of current assets: $r_{n+1}=\min \left(\max \left(0, \frac{\theta}{1+\sigma_{0}-\theta} r_{n}-d\right), r_{\max }\right)$. Equilibriums are the following $r=r_{\max }-$ crisis, $r_{u s}=\frac{1+\sigma_{0}-\theta}{2 \theta-1-\sigma_{0}} d$ unstable \& $r=0$ is the preferable one. They meet $r_{n+1}=r_{n}$. There is no crisis equilibrium if $\sigma+1>\theta+\sqrt{\theta^{2}-\omega \theta}$, at plane $\sigma=0$ this means that $\omega>2-\theta^{-1}$, - see curved line in Fig 2. Lower equilibrium is the main one or have hire potential when we see $\sigma>2 \theta-1-\omega$ or $\sigma>\bar{\omega}-2 \bar{\theta}$ (this is solution for condition $2 r_{u s}>r_{\max }$). One may consider it as a boarder of financial stability of economy \& single enterprise.

