МОДЕЛИРОВАНИЕ ТЕПЛОПЕРЕНОСА В АЭРОЗОЛЬНЫХ СИСТЕМАХ В ПОЛЕ ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ ПРИ РАЗЛИЧНЫХ УСЛОВИЯХ И РАСЧЕТ ТЕМПЕРАТУРЫ В ПОЛИДИСПЕРСНЫХ СИСТЕМАХ

Кривенко И. В., Смирнова М. А.

(Россия, Тверь)

Исследовано воздействие электромагнитного излучения на дисперсные системы и механизмы индуцированных в дисперсных частицах физических процессов. Предложены теоретические и численные методы решения тепловой задачи с источниками, инициированными электромагнитным излучением.

Введение. При воздействии электромагнитного излучения на дисперсную систему частицы поглощают энергию, происходит их разогрев, сопровождающийся различными физикохимическими процессами (испарением, фотофоретическим движением и др.). В рамках самой простой модели рассматриваются парные взаимодействия частиц. Поглощенная энергия, выделяющаяся при этом в виде тепла в единице объема частицы в единицу времени представляет собой тепловой источник, инициированный электромагнитным излучением. Плотность источников тепла в любой точке внутри частицы пропорциональна квадрату амплитуды электрического вектора. Распределение напряженности поглощенного электрического поля может быть найдено из решения электродинамических уравнений Максвелла.

Математическая модель взаимодействия электромагнитного излучения с двумя сферическими поглощающими дисперсными частицами. Две сферические частицы радиусов R_1 и R_2 находятся на расстоянии $O_1O_2=R$ друг от друга (рис.1). Ось z направлена вдоль линии, соединяющей центры сфер. Волновой

вектор падающей плоской волны \vec{k} образует угол Θ с положительным направлением оси z. Декартова система координат x'y'z' связана с центром первой частицы O_I . Ось z' сонаправлена вектору \vec{k} , ось x' — вектору напряженности электрического поля \vec{E} , а ось y' — вектору напряженности магнитного поля \vec{H} . С центрами сфер связаны декартовы системы координат $x_Iy_Iz_I$ и $x_2y_2z_2$ (оси x_I и x_2 , y_I и y_2 параллельны друг другу). Направление оси x_I выбирается таким образом, чтобы вектор \vec{k} лежал в плоскости x_IO_Iz , а ось y_I направлена таким образом, чтобы система координат x_Iy_Iz была правовинтовой. Также с каждой из указанных декартовых систем координат связывается соответствующая сферическая система координат: $r_I\theta_I$ φ , $r_2\theta_2$ φ , $r'\theta'\varphi'$.

Рис.1. Две сферические частицы в поле плоской волны. Выбор системы координат

На рис.1 через L' обозначена прямая, по которой пересекаются плоскости x_IO_Iz и $x'O_Iy'$, через L — линия пересечения плоскостей $x_IO_Iy_I$ и $x'O_Iy'$. Электрический вектор \vec{E} образует угол с плоскостью $\varphi = 0$ (β — угол между прямыми L' и x').

Полагая, что электрический и магнитный векторы зависят от времени по гармоническому закону, для их амплитуд можно записать:

$$\Delta E + k^{(j)2}E = 0, \tag{1}$$

$$\Delta H + k^{(j)2}H = 0, (2)$$

где $k^{(j)}$ — волновое число в среде ј, $k^2=-k_1k_2$, $k_1=\frac{i\,\omega}{c}(\varepsilon+i\,\frac{4\pi\sigma}{\omega}),\ k_2=i\,\frac{\omega}{c},\ \omega$ — циклическая частота, ε —

диэлектрическая проницаемость среды, σ — удельная проводимость, с — скорость света. Число j принимает значения: j=0 — во внешней среде, j=1 — внутри первой частицы, j=2 — внутри второй частицы. Для того, чтобы учесть влияние соседней частицы, внешнее по отношению к первой частице поле \vec{E}_j представляется в виде

$$\vec{E}_j = \vec{E} + \vec{E}_k^s, \tag{3}$$

где \vec{E} — электрический вектор плоской монохроматической электромагнитной волны, \vec{E}_k^s — световой вектор волны, рассеянной на соседней частице. Используя теорию Ми взаимодействия электромагнитного поля с одиночной поглощающей сферической частицей, можно представить векторы \vec{E} и \vec{H} векторов \vec{E} и \vec{H} через электрический U и магнитный V потенциалы Дебая [1]. Потенциалы Дебая поля падающего излучения выражены в системе координат X'Y'Z', а потенциалы Дебая поля, рассеянного на k -ой частице — в системе координат X_kY_kZ (k=1,2). Далее полученные выражения представляются в виде разложений по собственным сферическим функциям j-ой сферы $P_n^m(\cos\theta_j)e^{im\varphi}$. Такое преобразование выполняется с использованием методов теории представления групп. Указанные на рис.1 три угла поворота Эйле-

ра $\pi/2 - \beta$, Θ , $3\pi/2$ полностью определяют вращение g относительно точки O_I , переводящее систему координат X'Y'Z' в систему X_IY_IZ .

Совместное использование теорий Ми и представления групп [2] позволяет определить напряженности электрического и магнитного полей в любой точке для указанной модели [3]. Радиусы и состав частиц могут быть различными.

Расчет распределения температуры внутри системы сферических дисперсных частиц. Тепловой источник q_j определяется на основе решения электродинамической задачи [4]. Работы [5, 6] посвящены особенностям расчета средних по объему источников тепла.

Ранее было показано [3], что при углах Эйлера $\Theta = 90^\circ$, $\beta = -0^\circ$ распределение квадрата амплитуды электрического вектора зависит главным образом от значения координаты г внутри частицы. Для указанных углов Эйлера можно проводить расчет q_i , разбив частицу на концентрические слои, полагая, что значение $\left| \vec{E} \right|^2$ постоянно внутри слоя. Были проведены расчеты q_i^* для различных значений углов Эйлера для указанной системы водных капель. Из расчетов следует, что среднее значение плотности источников тепла существенно зависит от расположения системы двух частиц относительно волнового вектора и вектора напряженности электрического поля инициирующего источники лазерного излучения.

На основе проведенных расчетов построены диаграммы, характеризующие распределение температуры по сечению частицы водного аэрозоля радиусом $R_I=1$ мкм. Радиус соседней частицы $R_2=1$ мкм. Расстояние между центрами частиц R=20 мкм ($R/(R_1+R_2)=10$). Длина волны инициирующего теплоперенос лазерного излучения $\lambda=10.6$ мкм. Температура окружающей среды T=273 К. Коэффициент теплопроводности среды $\chi_e=57.5$ мкКал/см·К·с, коэффициенты теплопроводности вещества

частиц равны $\chi_I = \chi_2 = 1.35 \cdot 10^3$ мкКал/см·К·с. Значения комплексных показателей преломления вещества частиц (воды) 1.173 + і · 0.0823. Показатель преломления среды $n_e = 1$. Значения углов Эйлера $\Theta = 90^0$, $\beta = 0^0$. Рассматривалось сечение частицы, соответствующее значениям $\varphi = 0$ сферической координаты относительно центра первой частицы. Средние значения тепловых источников, инициированных лазерным излучением, $q_I = q_2 = 1.5 \cdot 10^{12} \ {\rm Bt/m}^3$. Здесь $q_j = q_j * I$, где $q_j * 8.657 \cdot 10^4 \ {\rm m}^{-1}$. Значение интенсивности I лазерного излучения выбрано произвольно; эту величину можно варьировать. Диаграммы построены в полярных координатах θ_I , r. Расстояние от центра диаграммы до кривой представляет собой разность температур в данной точке внутри частицы и в окружающей среде ΔT .

Рис.2. Диаграммы, характеризующие распределение температуры внутри частицы водного аэрозоля ($r = 0.1 \div 0.5$ мкм)

На рис. 2 построены указанные диаграммы для значений координаты $r_1 = 0.1$ мкм (кривая 1), $r_2 = 0.2$ мкм (кривая 2), $r_3 = -0.3$ мкм (кривая 3), $r_4 = 0.4$ мкм (кривая 4), $r_5 = 0.5$ мкм (кривая 5). Полученные диаграммы показывают, что при малом значении радиуса рассматриваемого сечения (10% от радиуса части-

цы) диаграмма представляет собой практически окружность (ΔT $(\theta_l = =0^0) \approx \Delta T(\theta_l = 180^0)$). С ростом r диаграммы «вытягиваются» по направлению к соседней частице, причем ΔT_2 ($\theta_l = 0^0$) > $\Delta T_{I}(\theta_{I} = =0^{0}), \Delta T_{2}(\theta_{I} = 180^{0}) < \Delta T_{I}(\theta_{I} = 180^{0})$ при $r_{I} > r_{2}$. Panee в работе [4] было показано, что электромагнитное и тепловое взаимодействие дисперсных частиц может быть заметным и при больших расстояниях между их центрами. Это связано с дифракцией электромагнитного излучения (влияющей также и на распределение тепловых источников). Так, например, при значении $R / (R_1 + R_2) = 3$ электромагнитное взаимодействие частиц минимально [3]. Максимумы электромагнитного взаимодействия расположены для данной системы частиц на расстояниях приблизительно $6 \div \div 6,2$ мкм. Таким образом, и на больших расстояниях между центрами частиц возникает неоднородное распределение температур по сечению частицы, которое усиливается с ростом интенсивности падающего излучения. Вблизи границы дисперсной частицы это распределение носит более неоднородный характер, чем в центральных областях, то есть имеет место выделение некоторого теплового поверхностного слоя частицы. Вид распределения температуры существенно влияет на эволюцию дисперсной системы в поле электромагнитного излучения.

Представляет интерес рассмотрение теплового взаимодействия двух дисперсных частиц, одна из которых (первая) поглощает значительно меньше, чем другая (вторая). В этом случае, решая соответствующую тепловую задачу [6], получим следующую формулу для температуры слабопоглощающей частицы:

$$T_1 - T_{\infty} = \sqrt{2(ch\xi - \cos\eta)} \frac{q_2 R_2^2}{\chi_1} \sum_{n=0}^{\infty} e^{(2n+1)(\xi_2 - \xi/2)} P_n(\cos\eta), \quad (4)$$

где χ_I – коэффициент теплопроводности первой частицы; R_j – радиус j -й частицы; q_2 – плотность теплового источника, обусловленного поглощением электромагнитного излучения второй час-

тицей;
$$ch\xi_2 = \frac{R^2 + R_1^2 - R_2^2}{2RR_1}$$
, R – расстояние между центрами

сфер; ξ , η — координаты в бисферической системе координат (ξ_l = const, ξ_2 = const — уравнения поверхностей сфер в бисферической системе координат), T_{∞} — температура среды, не возмущенной присутствием частиц. Из (5) следует, что перегрев ΔT_l слабопоглощающей частицы в данном случае пропорционален плотности q_2 . В свою очередь, известно, что при определенной частоте падающей электромагнитной волны знаменатели коэффициентов

поглощения обращаются в нуль [1] и величина $\left| \vec{E} \right|^2 \! o \! \infty \! .$

В этом случае, очевидно, вследствие сильного повышения температуры имеет место тепловой механизм разрушения частицы. Одно из условий для определения резонансной частоты может быть найдено из аналитических выражений для коэффициентов поглощения, полученных в [1], и имеет вид:

$$\widetilde{n}^{(1)}\zeta_{1}^{(1)}(k^{(0)}R_{2})\psi_{1}(\widetilde{n}^{(2)}k^{(0)}R_{2}) - \zeta_{1}^{(1)}(k^{(0)}R_{2})\psi_{1}(\widetilde{n}^{(2)}k^{(0)}R_{2}) = 0, \quad (5)$$

где
$$\widetilde{n}^{\,(1)}=rac{k^{\,(1)}k_2^{\,(0)}}{k^{\,(0)}k_2^{\,(1)}}, \quad \widetilde{n}^{\,(2)}=rac{k^{\,(2)}k_2^{\,(0)}}{k^{\,(0)}k_2^{\,(2)}}, \quad (j)$$
 — индексы, относящиеся

к веществам окружающей среды и частиц (j=0,1,2), $\zeta_n(z)=z\cdot h_n(z),\ \psi_n(z)=z\cdot j_n(z)$.

Условие (5), записанное для второй частицы, совпадает с аналогичным условием, полученным для одиночной сферической частицы [1]. В данном случае может иметь место тепловой пробой, обусловленный явлением электромагнитного резонанса в соседней частице с сильным поглощением.

Таким образом, во-первых, температурные диаграммы для каждой из дисперсной частиц деформируются тем сильнее, чем больше различие между радиусами частиц; во-вторых, в каждой частице возникает тепловой поверхностный слой, на структуру

которого оказывает влияние картина взаимодействия электромагнитного поля с соседней частицей; в-третьих, для системы двух сильно различающихся по оптическим свойствам частиц может иметь место тепловой пробой, обусловленный явлением электромагнитного резонанса.

Расчет температуры в неоднородной по составу дисперсной системе, содержащей различное число частиц. Здесь описываются вычислительные эксперименты, проведенные с помощью разработанной программы, основные результаты этих экспериментов и анализ полученных результатов. Методом конечных элементов исследовался процесс теплопереноса в дисперсных системах, различных по составу, конфигурации и размерам. Выбирались модельные схемы, размеры частиц в которых достаточно реальны для дисперсных систем (в частности, для аэрозолей).

Рассматривались частицы сферической формы, что позволило рассчитать коллективные эффекты, оценить зависимость температуры в системе от размера частицы и т.д., однако разработанная программа позволяет проводить расчеты для частиц произвольной формы. Так как задача соответствовала условиям теоремы Лыкова—Нигматулина [7], то это позволило проводить расчеты для плоского случая, что значительно упростило вычислительный эксперимент.

Методом конечных элементов проводился расчет температуры в каждом узле системы, представляющей собой прямоугольную площадку (90 на 70 мкм) с размещенными на ней сферическими частицами радиуса 5 и 10 мкм, моделирующую полидисперсную систему. Количество частиц варьировалось от одной до девяти, варьровалось также расположение частиц на площадке. Расчеты проводились с граничными условиями как первого, так и второго типа, согласно приведенной выше классификации. Нумерация частиц для полидисперсной системы приведена на рис. 3.

Основные результаты исследования процесса теплопереноса в дисперсных системах с однородными по составу частица-

ми опубликованы в работах [8–10]. Проводились расчеты температуры для систем, содержащих частицы как одинаковых, так и различных веществ. Предполагалось присутствие в системе частиц от одного до трех различных веществ. Расчеты проводились для конфигураций систем, содержащих 9 частиц.

Рис.3. Нумерация частиц для системы

Рис.4. Температура в частице № 5 для различных конфигураций системы

Характерные результаты расчетов для неоднородной полидисперсной системы приведены на рис. 4, 5, а конфигурации системы — в таблице 1.

Таблица 1. Конфигурации системы

Номер	Номера	Номера	Номера
конфигурации	частиц	частиц	частиц
системы	воды	железобетона	сажи
1	2,3,7,8	1,4,5,6,9	_
2	1,4,5,6,9	2,3,7,8	_
3	1,2,4,7	3,5,6,8,9	-
4	3,4,6,7	1,2,5,8,9	-
5	2,3,5,6,9	1,4,7,8	-
6	2,3,7,8	_	1,4,5,6,9
7	1,4,5,6,9	_	2,3,7,8
8	1,2,4,7	_	3,5,6,8,9
9	3,4,6,7	_	1,2,5,8,9
10	2,3,5,6,9	_	1,4,7,8
11	_	2,3,7,8	1,4,5,6,9
12	_	1,4,5,6,9	2,3,7,8
13		3,5,6,8,9	1,2,4,7
14	_	1,4,7,8	2,3,5,6,9
15	_	1,2,3,6,7,9	4,5,8

Из результатов проведенных исследований следует, что присутствие частиц, различных по размерам и своим теплофизическим свойствам приводит, к увеличению неоднородности температуры в системе, причем при линейной зависимости источника от температуры проявляются нелинейные эффекты, а при нелинейной зависимости — эти эффекты усиливаются. При граничных условиях третьего рода на внешней границе системы (откры-

тая система) влияние коллективных эффектов может изменять температуру в 1,5 и более раз. Оно тем больше, чем система более неоднородна (по размеру частиц и составу).

Рис.5. Температура в частице № 7 для различных конфигураций системы

Работа выполнена при поддержке РФФИ (грант № 03-01-00324)

СПИСОК ЛИТЕРАТУРЫ

- 1. Борн М., Вольф Э. Основы оптики. М.: Наука, 1970. 850 с.
- 2. Виленкин Н.Я. Специальные функции и теория представления групп. М.: Наука, 1956. 588 с.
- 3. Гамаюнов Н.И., Кривенко И.В., Уварова Л.А., Бондарев Ю.З. Особенности распространения электромагнитного излучения и инициированного им теплопереноса в системе аэрозольные частицыокружающая среда // ЖФХ.1997.Т.71.N 12. С.2270–2274.
- 4. Пришивалко А.П. Оптические и тепловые поля внутри светорассеивающих частиц. Мн.: Наука и техника, 1983. 190 с.
- 5. Гамаюнов Н.И., Кривенко И.В. Расчет средних по объему источников тепла внутри сферических частиц. Материалы науч.-техн. Конф. С международным участием «Физико-химические и экологические проблемы наукоемких технологий добычи и переработки органогенных материалов». Тверь: ТГТУ, 1999. с. 24–25.

- 6. Krivenko I.V., Klinger A.V., Uvarova L.A. Two disperse particles in the field of the electromagnetic radiation. / In collected articles «Mathematical Modeling: Problems, Methods, Applications». 2001. P. 231–243.
- 7. Можаев А.П. Теоремы теории тепломассообмена в неупорядоченных пористых средах // Тепломассообмен. Т.8. 2000. С.9.
- 8. M.A.Smirnova. Mathematical models nonlinear heat transfer in an inhomogeneous dispersible system. Mathematical Models Non-Linear Excitations, Transfer, Dynamics, and Control in Condensed Systems and Other Media, edited by Uvarova et al., Kluwer Academic / Plenum Publishtrs, New York, 1999. P.129–134.
- 9. Смирнова М.А. Особенности теплопереноса в дисперсных системах различных конфигураций. Тезисы докладов Международной научной конференции «Математические модели нелинейных возбуждений, переноса, динамики, управления в конденсированных системах и других средах». М.: «Станкин», 2000. С.106..
- 10. M.A.Smirnova. Heat transfer in disperse systems of various structures and configurations./In collected articles «Mathematical Modeling: Problems, Methods, Applications». New York Boston Dordrecht London Moscow: KLUWER ACADEMIC/PLENUM PUBLISHERS, 2001. P. 99–111.

MODELING OF HEAT TRANSFER IN AEROSOL SYSTEMS IN A FIELD OF THE ELECTROMAGNETIC RADIATION UNDER VARIOUS CONDITIONS AND CALCULATION OF THE TEMPERATURE IN POLIDISPERSE SYSTEMS

Krivenko I. V., Smirnova M. A.

Russia, Tver

The influence of electromagnetic radiation on disperse systems and mechanisms of induced physical processes in disperse particles is investigated. The theoretical and numerical methods of the decision of a thermal task with sources initiated by electromagnetic radiation are offered.