АКСИОМАТИКА ПОЛНЫХ ПО НОВИКОВУ РАСШИРЕНИЙ СУПЕРИНТУИЦИОНИСТСКОЙ ЛОГИКИ L3 В ЯЗЫКЕ С ДОПОЛНИТЕЛЬНОЙ ЛОГИЧЕСКОЙ КОНСТАНТОЙ

Яшин А.Д., Кощеева А.К.

Московский городской психолого–педагогический университет, Россия, 127051, Москва, Сретенка, 29

Суперинтуиционисиская логика L3 — одна из трёх т.н. npe dma бличных с.и.л. [1], характеризуется классом конечных частично упорядоченных множеств высоты 3 с наименьшим (корень) и наибольшим (топ) элементами (далее $da \tilde{u} Moh d \omega$). Класс даймондов обозначим через \mathbb{D} . Аксиоматика L3: $L3 = Int + \neg A \lor \neg \neg A$ (слабый закон исключённого третьего) $+A \lor (A \to (B \lor (B \to (C \lor \neg C))))$ (высота модели не более 3) с правилами модус поненс и подстановки.

К исходному языку добавляется новая константа φ . Класс формул расширяется до класса $Fm(\varphi)$. Формулы, не содержащие φ , называются *чистыми*. Под φ -логикой понимается подмножество $\mathcal{L} \subseteq Fm(\varphi)$, включающее Int и замкнутое относительно правил подстановки и модус поненс. φ -Логика \mathcal{L} консервативна над c.u.n. L, если $L \subset \mathcal{L}$ и $\mathcal{L} \cap Fm = L$. Максимальная (по включению) φ -логика, консервативная над c.u.n. L, называется *полной по* $\Pi.C.Новикову$ над L.

Приписывая к точкам данного даймонда константу φ (с наследованием вверх), получим φ -даймонд (раскрашенный даймонд). Рассмотрим 5 классов раскрашенных даймондов: \mathbb{D}^1 — даймонды цветового типа " φ нигде"; \mathbb{D}^2 — даймонды цветового типа " φ везде"; \mathbb{D}^3 — даймонды цветового типа " φ только в топе"; \mathbb{D}^4 — даймонды цветового типа " φ везде, кроме корня"; \mathbb{D}^1 — даймонды цветового типа " φ везде, кроме корня и единственной точки среднего слоя". φ -Логики $\mathcal{L}_1, \ldots, \mathcal{L}_5$ этих пяти классов, и только они, являются полными по Новикову расширениями с.и.л. L3 [2]. Предлагается аксиоматика указанных пяти φ -логик.

Теорема. 1) $\mathcal{L}_1 = L3 + \neg \varphi$; 2) $\mathcal{L}_2 = L3 + \varphi$; 3) $\mathcal{L}_3 = L3 + \neg \neg \varphi + \varphi \rightarrow (A \vee \neg A)$; 4) $\mathcal{L}_4 = L3 + \neg \neg \varphi + \varphi \rightarrow (A \vee (A \rightarrow (B \vee \neg B))) + A \vee (A \rightarrow \varphi)$; 5) $\mathcal{L}_5 = L3 + \neg \neg \varphi + \varphi \rightarrow (A \vee (A \rightarrow (B \vee \neg B))) + ((A \wedge B) \rightarrow \varphi) \rightarrow ((A \rightarrow \varphi) \vee (B \rightarrow \varphi)) + ((A \rightarrow \varphi) \wedge ((\varphi \rightarrow A) \rightarrow A) \rightarrow (\varphi \vee \neg A)$.

Литература.

- 1. *Максимова Л.Л*. Предтабличные суперинтуиционистские логики. Алгебра и логика, 11, № 5 (1972). Стр.558—570.
- 2. *Кощеева А.К.* Новая константа в суперинтуиционистской логике L3 [Электронный ресурс] / А. К. Кощеева // Международная конференция "Мальцевские чтения", посвященная 60-летию со дня рождения Сергея Савостьяновича Гончарова, 11-14 октября 2011 г.: тез. докл. / Ин-т математики им. С. Л. Соболева, Новосибир. гос. ун-т. Новосибирск, 2011. С. 137.