BOUNDARY VALUE PROBLEM FOR QUASILINEAR PARABOLIC EQUATIONS WITH A LEVY LAPLACIAN

Kovtun I. I.

P.O.B. 68, Kiev 04212 Ukraine

Let H be a real infinite dimensional Hilbert space. Let a scalar function F depend on H is twice strongly differentiable at a point x_{0}. The Lévy Laplacian of F at the point x_{0} is defined the formula [1]

$$
\Delta_{L} F\left(x_{0}\right)=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n}\left(F^{\prime \prime}\left(x_{0}\right) f_{k}, f_{k}\right)_{H}
$$

where $F^{\prime \prime}(x)$ is the Hessian of $F(x)$, and $\left\{f_{k}\right\}_{1}^{\infty}$ is an orthonormal basis in H.
Let Ω be a bounded domain in the Hilbert space H (that is a bounded open set in H), and $\bar{\Omega}=\Omega \cup \Gamma$ be a domain in H with boundary Γ :

$$
\Omega=\left\{x \in H: 0 \leq Q(x)\left\langle R^{2}\right\}, \quad \Gamma=\left\{x \in H: Q(x)=R^{2}\right\}\right.
$$

where $Q(x)$ is a twice strongly differentiable function such that $\left.\Delta_{L} Q(x)=\gamma, \gamma\right\rangle 0$ is a positive constant.

Consider the Cauchy problem

$$
\begin{equation*}
\frac{\partial U(t, x)}{\partial t}=\Delta_{L} U(t, x)+f_{0}(U(t, x)), \quad U(0, x)=U_{0}(x) \tag{1}
\end{equation*}
$$

where $U(t, x)$ is a function on $[0, \mathfrak{T}] \times H, f_{0}(\xi)$ is a given function of one variable, $U_{0}(x)$ is a given function defined on H.

Assume exists a primitive $\varphi(\xi)=\int \frac{d \xi}{f_{0}(\xi)}$ and the inverse function φ^{-1}. Assume exists a solution of the Cauchy problem for the heat equation

$$
\frac{\partial V(t, x)}{\partial t}=\Delta_{L} V(t, x), \quad V(0, x)=U_{0}(x)
$$

Then the solution $U(t, x)$ of the Cauchy problem (1) is

$$
U(t, x)=\varphi^{-1}(t+\varphi(V(t, x)))
$$

References.

1. Lévy P. Sur la generalisation de léquation de Laplace dans domaine fonctionnelle. C.R.Acad. Sc. 168, 1919. P. 752-755.
