RADIATION EFFECTS IN MATERIALS: STATE-OF-THE-ART AND FUTURE OUTLOOK FOR GLASSES, POLYMERS AND BIOMATERIALS

Kavetskyy T.S.^{1,2,3}, Khalilov R.I.^{3,4,5}, Nasibova A.N.^{3,5}, Stepanov A.L.^{6,7,8}

 ¹Drohobych Ivan Franko State Pedagogical University, 82100 Drohobych, Ukraine
²The John Paul II Catholic University of Lublin, 20-950 Lublin, Poland
³Joint Ukraine-Azerbaijan International Research and Education Center of Nanobiotechnology and Functional Nanosystems, Drohobych, Ukraine & Baku, Azerbaijan
⁴Baku State University, AZ 1148, Baku, Azerbaijan
⁵Institute of Radiation Problems, National Academy of Sciences of Azerbaijan, AZ 1143 Baku, Azerbaijan
⁶Kazan Physical-Technical Institute, Russian Academy of Sciences, 420029 Kazan, Russia
⁷Kazan Federal University, 420008 Kazan, Russia
⁸Kazan National Research Technological University, 420015 Kazan, Russia Tel: (+994)503213211

A review of the state-of-the-art in systematic investigations of radiation effects in glasses, polymers and biomaterials is presented. Radiation-induced changes for glassy materials exemplified by chalcogenide glasses, caused by high-energy γ -irradiation, are considered from the atomic- and void-species organization viewpoint. In case of polymers, radiation-induced changes for polymethylmethacrylate based composite films, caused by low-energy boron and silver ion irradiation, are considered from the depth profiling of defects viewpoint. Some aspects of radiation-induced changes for biomaterials exemplified by plants grown on soils of Apsheron peninsula (Azerbaijan), caused by low-energy γ -irradiation, are considered from the accumulation of magnetic nanoparticles viewpoint. Future perspectives on the radiation effects in such type of materials are also discussed.