MATHEMATICAL ANALYSIS OF EQUATION IMITATING DNA
BASE OSCILLATIONS

Yakushevich L. V., Gapa S., Awrejcewicz J.

Rotational oscillations of the bases: adenine (A), thymine (T), guanine (G)
and cytosine (C), around one of two sugar-phosphate DNA chains are
considered in detail. To construct the model equation, an analogy between
rotational oscillations of the bases and rotational oscillations of a single
mechanical pendulum was used. The equation was analyzed by the method of
phase trajectories. As a result, the phase portraits corresponding to different
base oscillators and to different models of surrounding conditions have been
obtained.

Introduction. It is widely accepted that DNA is one of the most
important biological molecules because of its ability to store and to transfer
genetic information. It is also known that DNA structure is not static, but
dynamic (Skymesnu, 2007). Many investigators even suggest that DNA
«breathes». Studies of the DNA «breathing» helps us to understand better the
dynamical mechanisms of biological activity of the molecule.

In this work only one aspect of the DNA dynamics is considered,
namely, the rotational oscillations of the DNA bases (adenine (A), thymine
(T), guanine (G) and cytosine (C)) around the sugar-phosphate chains. We
study in detail single base oscillations. To construct model equation, we use
the analogy between the rotational oscillations of the DNA bases (Fig. 1a)
and the rotational oscillations of a single mechanical pendulum
(Awrejcewicz, 1996; Gapa, 2008) (Fig. 1b). At first the analogy has been
noticed in the work of Englander and coauthors (Englander et al, 1980), and
then it was successfully used by many investigators to model rotational
oscillations of the DNA bases.

We obtain and analyze the phase portraits for each base pendulum. At
first, we study the phase portraits corresponding to small and large amplitude
oscillations with constant forcing Fy and damping S. Then, we consider the
case of periodical external force F' = F,cos Q.
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Fig. 1. Schematic picture of a fragment of double DNA chain including A, T, G and
C bases (a) and one base oscillator (b).

Model equation. Taking into account the analogy mentioned above we
can suggest that rotational oscillations of a single DNA base is governed by
the following equation (SIkymesuu et al, 2007):

tht+VSin¢:_ﬂ¢z+Fi (l)
where ¢(f) governs the angular displacement of bases, / is the moment of
inertia of the bases, V' is the parameter determined by the hydrogen
interactions between the bases in pairs, f§ is the coefficient of dissipation, and
F is an external generalized force. In this paper we shall consider two simple
models of generalized force: constant force (F = Fj) and periodical force
F =F cosQt.

Let us begin with the particular case F = Fy. To make calculations
easier we can divide both parts of equation (1) by / and apply the following
transformation:

t=Ar, A=10". )
Resulting model equation then takes the form:
@, +w;sinp=-bp_+k, 3)

where @l =VA*[1, by =pAI, k, = F,A%]1.
Equation (3) has three coefficients (wq, by and ky) which take different
values for different DNA bases. Estimations of the values carried out with the
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help of the data reported in our Table 1. Values of the coefficients of

previous work (SIkymesuu et al, equation (3).

2005) are presented in Table 1. base a)g b, ko
To make mathematical

. . A 0.2747  0.0056  0.0041
analysis of the model equation, T 02941 0.0087 0.0064
it is convenient (i) to use the G 03797  0.0052 0.0038
system of two differential C 05162 00103  0.0076
equations

=0, 4)

V. :_a)oz sing —byy +k,, (5)

which is equivalent to equation (3), and (ii) to construct the phase portraits of
the investigated dynamical systems in the plane {(p, 1//} .

Results obtained in the case f=0 and ¢ <<1. If we suggest that
effects of dissipation are absent (f = 0), the potential energy of a single DNA
base oscillator can be written as follows:

U(p)=V(l-cosp)~Fyp. (6)
After transformation (2) formula (6) takes the form:

U(p)=(I/2*) u(p)., (7)

where

u(p) = @, (1-cos )~ kyp (®)
plays the role of potential energy of the dynamical system modeled by
equation (3).

Potential energy u(p) and phase trajectories in the plane {(o,t//}
calculated for each of the DNA base oscillators (A, T, G and C) are shown in
Fig. 2. When constructing the phase portraits we used the following set of
initial conditions: [@(0)=0.0, w(0)=0.0], [@(0)=0.008, w(0)=-0.01],
[¢(0) = 0.01, w(0) = 0.0003].
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Fig. 2. Potential energy and phase portraits of small amplitude rotational oscillations
of adenine (A), thymine (T), guanine (G) and cytosine (C). (F = Fo, = 0).

The phase portraits presented in Fig. 2 look like ellipses. The sizes of
large and small axes (4, and h,) are different for various types of base
oscillators. The centers of the ellipses are placed in the points of equilibrium,
and they are approximately determined by formulas

¢min :kO/a)g ; (9)
w=0. (10)
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Results obtained in the case ## 0 and ¢ << 1. If effects of dissipation
are taken into account, the phase trajectories calculated for each of four DNA
base oscillators (A, T, G and C) are transformed from ellipses (Fig. 2) to
spirals (Fig. 3).
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Fig. 3. Phase trajectories of small amplitude rotational oscillations of adenine (A),
thymine (T), guanine (G) and cytosine (C). Effects of dissipation and the action of
constant generalized force are taken into account.

Each of the portraits shown in Fig. 3 was made for the same initial
conditions: [¢(0) = 0.0, w(0) = 0.0]. The phase portraits look like spirals with
the centers in the stable equilibrium points approximately determined by
formulas (9)—(10). The time of the calculations made to obtain the phase
portraits was the same for each of base oscillators. So, the size of holes in
Fig. 3 gives us information about the velocity of dissipation.

Results obtained in the case of large amplitudes of oscillations. The
figures presented in the previous section were obtained for small amplitudes.
In this section we consider large amplitude oscillations. In this case, the
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Fig. 4. Phase portraits of large amplitude oscillations of adenine (A), thymine (T),
guanine (G) and cytosine (C). Effects of dissipation and the action of constant
generalized force are taken into account.

phase trajectories calculated for each of four DNA base oscillators (A, T, G
and C) take the form shown in Fig. 4. Each of the portraits was made for the
same initial conditions: [@(0) =3.2, w(0)=—0.5], [¢(0) = 3.6, w(0) =0.01],
[¢(0) = 9.0, w(0) =—0.6].

Besides general characteristics of the phase portraits discussed above,
we can observe an unstable saddle point. Trajectories, which go through that
point, mirror the situation when pendulum (base) makes the whole circle
around sugar-phosphate chain.
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Results obtained in the case of periodical external force. The basic
model equation imitating the DNA base oscillations takes in this case the
following form:

1, +V sing =—pop,+F, cosQt. (11

After transformation (2) equation (11) reads

@, +@; sinp=-byp_+k,cosyr, (12)
where y =Q/ 1.

To construct and to analyze the phase trajectories, it is convenient to
consider the system of three first order differential equations

V=0, (13)
v, =-w, sinp—by +k,cosb, (14)
0.=7, (15)

which is equivalent to equation (12). Phase portraits obtained for each of four
DNA base oscillators (A, T, G and C) are shown in Fig. 5. To construct
trajectories we used the model value y = 0.5 and the initial conditions
[¢(0) = 0.0, w(0) = 0.0, (0) = 0.0].

In addition to the phase portraits
shown in Fig. 5 we obtained the graphs
of solution ¢(7) calculated for each of

Table 2. Model values of the
frequencies wgand y.

b
four DNA base oscillators (Fig. 6). e 20 -

. . A 0.5241 0.5

It is easy to notice that the
. . . T 0.5423 0.5

dynamical behavior of the adenine and
. ) . . G 0.6162 0.5
thymine oscillators substantially differs C 07185 05

from that of guanine and cytosine
oscillators. It might be explained by the relations between the natural
frequency wg and the frequency of periodical external force y. Indeed, as
follows from Table 2, the difference is smaller in the first two cases and
bigger in the other two.

After some time, trajectories stabilize and periodical oscillations around
equilibrium point with the frequency y appear. This behavior is illustrated in
Fig. 6, where numerical solutions of each pendulum are presented, with the
initial conditions [¢(0) = 0.0, w(0) = 0.0, 6(0) = 0.0].
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Fig. 5. Phase trajectories of small amplitude oscillations of adenine (A), thymine
(T), guanine (G) and cytosine (C) in three dimensional space {go,z//,é’}. Effects of

dissipation and the action of periodical generalized force are taken into account.

Conclusions. In this paper we have considered small and large
amplitude oscillations of four DNA bases (A, T, G and C). We included into
consideration the effects of dissipation and the action of generalized force.
Two different models of the force were discussed: constant force Fy and
periodical force F' = F| cos Qt.

We obtained the phase portraits of each of the base oscillators and
found the differences in the amplitudes, velocities of dissipation and
positions of the equilibrium points.

The work was partly supported by the grant of no. 08-04-00197 of the Russian
Foundation for Basic Research.
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Fig. 6. Small amplitude oscillations ¢(z) of adenine (A), thymine (T), guanine (G)

and cytosine (C). Effects of dissipation and the action of periodical generalized force
are taken into account.
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MATEMATUYECKWI AHAJIN3 YPABHEHUSI KOJTEBAHUM
OCHOBAHWI THK

Sxymesnu JI. B., I'ana C., Aspeiinesny 5.

Hccnedyromes epawamenvhule Koiebanusi OCHO8aHuU: adeHuna (A), mumuna
(1), eyanuna (G) u yumosuna (C), 6okpye 00HOU u3 08yx caxapoghocghammix
yenowex JHK. J{na nocmpoenuss MOOeIbHO2O YPAGHEeHUs. UCHONb306AHA
amanozcus — Mexcoy — BPaAuAMENnbHbIMU  KONCOAHUAMU — OCHOBAHUL U
8PAUAMENbHBIMU KOICOAHUAMU MAMEMAMUYECKO20 MASIMHUKA. J[1s1 ananuza
MOOENbHO2O YpagHeHUs Obll UCNONb308AH Memoo Ga308blx mpaekmoputl. B
pesyiomame  Obliu  NONYYEHbl  (A306ble  NOPMPENntbl  OCYULIAMOPOS,
coomeememeyowux paziudneim ochosanusm JHK u paziuunvim modensm
BHEWHE20 OKPYICEHUSL.
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