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Rotational oscillations of the bases: adenine (A), thymine (T), guanine (G) 

and cytosine (C), around one of two sugar-phosphate DNA chains are 

considered in detail. To construct the model equation, an analogy between 

rotational oscillations of the bases and rotational oscillations of a single 

mechanical pendulum was used. The equation was analyzed by the method of 

phase trajectories. As a result, the phase portraits corresponding to different 

base oscillators and to different models of surrounding conditions have been 

obtained.  

 

 

Introduction. It is widely accepted that DNA is one of the most 

important biological molecules because of its ability to store and to transfer 

genetic information. It is also known that DNA structure is not static, but 

dynamic (əɤɭɲɟɜɢɱ, 2007). Many investigators even suggest that DNA 

«breathes». Studies of the DNA «breathing» helps us to understand better the 

dynamical mechanisms of biological activity of the molecule.  

In this work only one aspect of the DNA dynamics is considered, 

namely, the rotational oscillations of the DNA bases (adenine (A), thymine 

(T), guanine (G) and cytosine (C)) around the sugar-phosphate chains. We 

study in detail single base oscillations. To construct model equation, we use 

the analogy between the rotational oscillations of the DNA bases (Fig. 1a) 

and the rotational oscillations of a single mechanical pendulum 

(Awrejcewicz, 1996; Gapa, 2008) (Fig. 1b). At first the analogy has been 

noticed in the work of Englander and coauthors (Englander et al, 1980), and 

then it was successfully used by many investigators to model rotational 

oscillations of the DNA bases.  

We obtain and analyze the phase portraits for each base pendulum. At 

first, we study the phase portraits corresponding to small and large amplitude 

oscillations with constant forcing F0 and damping ȕ. Then, we consider the 

case of periodical external force 0 cosF F t= Ω . 
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Fig. 1. Schematic picture of a fragment of double DNA chain including A, T, G and 

C bases (a) and one base oscillator (b).  

 

Model equation. Taking into account the analogy mentioned above we 

can suggest that rotational oscillations of a single DNA base is governed by 

the following equation (əɤɭɲɟɜɢɱ et al, 2007): 

+ sin +tt tI V Fϕ ϕ βϕ= − , (1) 

where ĳ(t) governs the angular displacement of bases, I is the moment of 

inertia of the bases, V is the parameter determined by the hydrogen 

interactions between the bases in pairs, ȕ is the coefficient of dissipation, and 

F is an external generalized force. In this paper we shall consider two simple 

models of generalized force: constant force (F = F0) and periodical force 

0 cosF F t= Ω . 

Let us begin with the particular case F = F0. To make calculations 

easier we can divide both parts of equation (1) by I and apply the following 

transformation:  

t λτ= , 1210λ −= . (2) 

Resulting model equation then takes the form:  
2

0 0 0sintt b kτϕ ω ϕ ϕ+ = − + , (3) 

where 2 2

0 V Iω λ= , 0b Iβλ= , 2

0 0k F Iλ= .  

Equation (3) has three coefficients (Ȧ0, b0 and k0) which take different 

values for different DNA bases. Estimations of the values carried out with the 
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help of the data reported in our 

previous work (əɤɭɲɟɜɢɱ et al, 

2005) are presented in Table 1.  

To make mathematical 

analysis of the model equation, 

it is convenient (i) to use the 

system of two differential 

equations  

 

τψ ϕ= ,  (4) 
2

0 0 0sin b kτψ ω ϕ ψ= − − + ,  (5) 

 

which is equivalent to equation (3), and (ii) to construct the phase portraits of 

the investigated dynamical systems in the plane { },ϕ ψ .  

 

Results obtained in the case ȕ = 0 and ĳ << 1. If we suggest that 

effects of dissipation are absent (ȕ = 0), the potential energy of a single DNA 

base oscillator can be written as follows: 

0( ) (1 cos )U V Fϕ ϕ ϕ= − − .  (6) 

After transformation (2) formula (6) takes the form: 

 
2( ) ( ) ( )U I uϕ λ ϕ= ⋅ , (7) 

 

where  
2

0 0( ) (1 cos )u kϕ ω ϕ ϕ= − −  (8) 

plays the role of potential energy of the dynamical system modeled by 

equation (3).  

Potential energy u(ĳ) and phase trajectories in the plane { },ϕ ψ  

calculated for each of the DNA base oscillators (A, T, G and C) are shown in 

Fig. 2. When constructing the phase portraits we used the following set of 

initial conditions: [ĳ(0) = 0.0, ȥ(0) = 0.0], [ĳ(0) = 0.008, ȥ(0) = – 0.01], 

[ĳ(0) = 0.01, ȥ(0) = 0.0003].  

 

  Table 1. Values of the coefficients of  

  equation (3). 

base 2

0ω  0b  k0 

A 0.2747 0.0056 0.0041 

T 0.2941 0.0087 0.0064 

G 0.3797 0.0052 0.0038 

C 0.5162 0.0103 0.0076 
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Fig. 2. Potential energy and phase portraits of small amplitude rotational oscillations 

of adenine (A), thymine (T), guanine (G) and cytosine (C). (F =  F0, ȕ = 0).  

 

The phase portraits presented in Fig. 2 look like ellipses. The sizes of 

large and small axes (hĳ and hȥ) are different for various types of base 

oscillators. The centers of the ellipses are placed in the points of equilibrium, 

and they are approximately determined by formulas 
2

min 0 0kϕ ω= ; (9) 

ȥ = 0. (10) 
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Results obtained in the case ȕ ≠ 0 and ĳ << 1. If effects of dissipation 

are taken into account, the phase trajectories calculated for each of four DNA 

base oscillators (A, T, G and C) are transformed from ellipses (Fig. 2) to 

spirals (Fig. 3).  

 

A  

 

T  

 

G  C 

 
 

Fig. 3. Phase trajectories of small amplitude rotational oscillations of adenine (A), 

thymine (T), guanine (G) and cytosine (C). Effects of dissipation and the action of 

constant generalized force are taken into account.  

 

Each of the portraits shown in Fig. 3 was made for the same initial 

conditions: [ĳ(0) = 0.0, ȥ(0) = 0.0]. The phase portraits look like spirals with 

the centers in the stable equilibrium points approximately determined by 

formulas (9)–(10). The time of the calculations made to obtain the phase 

portraits was the same for each of base oscillators. So, the size of holes in 

Fig. 3 gives us information about the velocity of dissipation.  

Results obtained in the case of large amplitudes of oscillations. The 

figures presented in the previous section were obtained for small amplitudes. 

In this section we consider large amplitude oscillations. In this case, the  
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Fig. 4. Phase portraits of large amplitude oscillations of adenine (A), thymine (T), 

guanine (G) and cytosine (C). Effects of dissipation and the action of constant 

generalized force are taken into account.  

 

phase trajectories calculated for each of four DNA base oscillators (A, T, G 

and C) take the form shown in Fig. 4. Each of the portraits was made for the 

same initial conditions: [ĳĳ(0) = 3.2, ȥȥ(0) = – 0.5], [ĳĳ(0) = 3.6, ȥȥ(0) = 0.01], 

[ĳĳ(0) = 9.0, ȥȥ(0) = – 0.6].  

Besides general characteristics of the phase portraits discussed above, 

we can observe an unstable saddle point. Trajectories, which go through that 

point, mirror the situation when pendulum (base) makes the whole circle 

around sugar-phosphate chain.  
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Results obtained in the case of periodical external force. The basic 

model equation imitating the DNA base oscillations takes in this case the 

following form: 

 

0+ sin + costt tI V F tϕ ϕ βϕ= − Ω . (11) 

 

After transformation (2) equation (11) reads  
2

0 0 0sin costt b kτϕ ω ϕ ϕ γτ+ = − + ,  (12) 

where γ λ= Ω . 

To construct and to analyze the phase trajectories, it is convenient to 

consider the system of three first order differential equations  

τψ ϕ= ,  (13) 
2

0 0 0sin cosb kτψ ω ϕ ψ θ= − − + ,  (14) 

τθ γ= ,  (15) 

which is equivalent to equation (12). Phase portraits obtained for each of four 

DNA base oscillators (A, T, G and C) are shown in Fig. 5. To construct 

trajectories we used the model value Ȗ = 0.5 and the initial conditions 

[ĳ(0) = 0.0, ȥ(0) = 0.0, θ (0) = 0.0]. 

In addition to the phase portraits 

shown in Fig. 5 we obtained the graphs 

of solution ĳ(τ) calculated for each of 

four DNA base oscillators (Fig. 6).  

It is easy to notice that the 

dynamical behavior of the adenine and 

thymine oscillators substantially differs 

from that of guanine and cytosine 

oscillators. It might be explained by the relations between the natural 

frequency Ȧ0 and the frequency of periodical external force Ȗ. Indeed, as 

follows from Table 2, the difference is smaller in the first two cases and 

bigger in the other two.  

After some time, trajectories stabilize and periodical oscillations around 

equilibrium point with the frequency Ȗ appear. This behavior is illustrated in 

Fig. 6, where numerical solutions of each pendulum are presented, with the 

initial conditions [ĳ(0) = 0.0, ȥ(0) = 0.0, ș(0) = 0.0].  

 

Table 2. Model values of the  

frequencies Ȧ0 and Ȗ. 
base Ȧ0 Ȗ 
A 0.5241 0.5 

T 0.5423 0.5 

G 0.6162 0.5 

C 0.7185 0.5 
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Fig. 5. Phase trajectories of small amplitude oscillations of adenine (A), thymine 

(T), guanine (G) and cytosine (C) in three dimensional space { }, ,ϕ ψ θ . Effects of 

dissipation and the action of periodical generalized force are taken into account.  

 

Conclusions. In this paper we have considered small and large 

amplitude oscillations of four DNA bases (A, T, G and C). We included into 

consideration the effects of dissipation and the action of generalized force. 

Two different models of the force were discussed: constant force F0 and 

periodical force 0 cosF F t= Ω .  

We obtained the phase portraits of each of the base oscillators and 

found the differences in the amplitudes, velocities of dissipation and 

positions of the equilibrium points.  
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Fig. 6. Small amplitude oscillations ĳ(Ĳ) of adenine (A), thymine (T), guanine (G) 

and cytosine (C). Effects of dissipation and the action of periodical generalized force 

are taken into account.  
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ɂɫɫɥɟɞɭɸɬɫɹ ɜɪɚɳɚɬɟɥɶɧɵɟ ɤɨɥɟɛɚɧɢɹ ɨɫɧɨɜɚɧɢɣ: ɚɞɟɧɢɧɚ (A), ɬɢɦɢɧɚ 
(T), ɝɭɚɧɢɧɚ (G) ɢ ɰɢɬɨɡɢɧɚ (C), ɜɨɤɪɭɝ ɨɞɧɨɣ ɢɡ ɞɜɭɯ ɫɚɯɚɪɨɮɨɫɮɚɬɧɵɯ 
ɰɟɩɨɱɟɤ ȾɇɄ. Ⱦɥɹ ɩɨɫɬɪɨɟɧɢɹ ɦɨɞɟɥɶɧɨɝɨ ɭɪɚɜɧɟɧɢɹ ɢɫɩɨɥɶɡɨɜɚɧɚ 
ɚɧɚɥɨɝɢɹ ɦɟɠɞɭ ɜɪɚɳɚɬɟɥɶɧɵɦɢ ɤɨɥɟɛɚɧɢɹɦɢ ɨɫɧɨɜɚɧɢɣ ɢ 
ɜɪɚɳɚɬɟɥɶɧɵɦɢ ɤɨɥɟɛɚɧɢɹɦɢ ɦɚɬɟɦɚɬɢɱɟɫɤɨɝɨ ɦɚɹɬɧɢɤɚ. Ⱦɥɹ ɚɧɚɥɢɡɚ 
ɦɨɞɟɥɶɧɨɝɨ ɭɪɚɜɧɟɧɢɹ ɛɵɥ ɢɫɩɨɥɶɡɨɜɚɧ ɦɟɬɨɞ ɮɚɡɨɜɵɯ ɬɪɚɟɤɬɨɪɢɣ. ȼ 

ɪɟɡɭɥɶɬɚɬɟ ɛɵɥɢ ɩɨɥɭɱɟɧɵ ɮɚɡɨɜɵɟ ɩɨɪɬɪɟɬɵ ɨɫɰɢɥɥɹɬɨɪɨɜ, 
ɫɨɨɬɜɟɬɫɬɜɭɸɳɢɯ ɪɚɡɥɢɱɧɵɦ ɨɫɧɨɜɚɧɢɹɦ ȾɇɄ ɢ ɪɚɡɥɢɱɧɵɦ ɦɨɞɟɥɹɦ 

ɜɧɟɲɧɟɝɨ ɨɤɪɭɠɟɧɢɹ.  
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