О НЕПОДВИЖНЫХ ТОЧКАХ ОПЕРАТОРА ТИПА ГАММЕРШТЕЙНА

Дементьева А.М., Дементьев С.Н., Яновский Л.П.

Воронежский государственный аграрный университет им. К.Д.Глинки, каф. Высшей математики и теоретической механики, Россия, 394087, г. Воронеж, ул. Мичурина, 1, Тел.: (4732) 537-371, E-mail: mathem@agroeng.vsau.ru

Ряд теорем о неподвижных точках, доказанных в [1], предполагают односторонние ограничения на нелинейность, сформулированные в терминах скалярных произведений или использующие неравенства в пространствах функций с естественной упорядоченностью. Авторами предлагается объединить оба вида односторонних оценок на основе подхода, имеющего конусную природу.

Рассмотрим банахово пространство E и некоторое полуупорядоченное конусом K пространство F. Обозначим через θ_F ноль пространства F. Пусть оператор $A:E\to E$ задан и вполне непрерывен в ограниченной области $\Omega\subset E$, содержащей θ_E , и на границе $\partial\Omega$. Предположим, что существуют отображения $T_1:E\to F$ и $T_2:R(A)\to F$, где R(A)—область значений оператора A.

Теорема 1. Пусть для всех $x \in \partial \Omega$ выполнено неравенство

$$T_2(Ax) \le T_1(x)$$

и операторы T_1 , T_2 при $Ax = \lambda x$, $\lambda > 0$, $x \in \partial \Omega$ удовлетворяют условиям

$$T_2(Ax) \ge \lambda T_1(x); T_1(x) > \theta_F.$$

Тогда оператор A имеет в $\bar{\Omega}$ по крайней мере одну неподвижную точку.

Теорема 2. Пусть A – линейный вполне непрерывный, а f – ограниченный непрерывный операторы в E . Пусть для $x \in E$ операторы T_1 , T_2 , T_3 , действующие из E в F , удовлетворяют следующим условиям:

$$T_1(x)> heta_F$$
 при $x
eq heta_E$;
$$T_3(fAx)\ge \lambda T_1(x)$$
 при $fAx=\lambda x$ и $\lambda>0$;
$$T_2(Ax)\le \mu T_1(x)$$
 для некоторых $\mu\ge 0$.

Пусть inf $\mu=\mu(A)$, где μ удовлетворяет предыдущему условию. Пусть, наконец, $T_3(fx) \leq qT_2(x) + b$ при $0 \leq q\mu(A) < 1, \ b \geq \theta_F$ и из условия $T_1(x) \leq a, \ a \geq \theta_F$ для некоторого R>0 вытекает неравенство $\|x\| \leq R$. Тогда оператор Гаммерштейна B=Af имеет в E по крайней мере одну неподвижную точку.

Литература.

1. Красносельский М.А., Забрейко П.П. Геометрические методы нелинейного анализа.- М.: Наука, 1975. 510 с.