THE BOUNDARY VALUE PROBLEM FOR QUASILINEAR PARABOLIC EOUATIONS WITH A LEVY LAPLACIAN FOR FUNCTIONS OF INFINITE NUMBER OF VARIABLES

Kovtun I.I.

National University of Life and Environmental Sciences of Ukraine, Geroiv Oborony 15, Kiev 03041 Ukraine

The Lévy Laplacian of F(x) it the point x_0 is defined (if it exists) by the formula [1] $\Delta_L F(x_0) = \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^n (F''(x_0) f_k, f_k)_H$, where function F(x) defined on the Hilbert space H is twice strongly differentiable at a point x_0 , F''(x) is the Hessian of F(x), and $\{f_k\}_1^\infty$ is an orthonormal basis in H.

Let $\overline{\Omega} = \Omega \cup \Gamma$ be a domain in $H, \Omega = \{x \in H : 0 \le Q(x) < R^2\}, \Gamma$ is boundary and $\Gamma = \{x \in H : Q(x) = R^2\}$. The function Q(x) is a twice strongly differentiable function such that $\Delta_L Q(x) = \gamma$, $\gamma > 0$ is positive constant. Consider the function $T(x) = \frac{R^2 - Q^2}{\gamma}$ possesses the following properties $0 < T(x)\frac{R^2}{\gamma}$, $\Delta_L T(x) = -1$ if $x \in \Omega$, and T(x) = 0if $x \in \Gamma$. Let in a certain functional class \mathcal{F} exists a solution of the boundary value problem for the heat equations $\frac{\partial V(t,x)}{\partial t} = \Delta_L V(t,x)$, V(t,x) = G(t,x) on Γ , where G(t,x) is a given function defined on H.

Consider the boundary value problem [2]

$$\frac{\partial U(t,x)}{\partial t} = \Delta_L U(t,x) + f_0(U(t,x)), \tag{1}$$

$$U(t,x) = G(t,x) \quad on \ \Gamma, \tag{2}$$

where U(t, x) is a function on $[0, \mathcal{T}] \times H$, $f_0(\xi)$ is a given function of one variable and exist both primitive $\varphi(\xi) = \int \frac{d\xi}{f_0(\xi)}$ and its inverse function φ^{-1} . Then solution of the boundary value problem (1), (2) is given by the equation

$$U(t,x) = \varphi^{-1}(T(x) + \varphi(V(t,x))),$$

where V(t, x) is the solution of the boundary value problem for the heat equations.

References

- 1. Lévy P. Problèmes concrets d'analyse fonctionnelle. Paris: Gauthier-Villars, 1951.
- 2. Feller M. N., Kovtun I. I. Quasilinear parabolic equations with a Lèvy Laplacian for functions of infinite number of variables, Methods of functional analysis and topology. Volume 14. Number 2, 2008, PP. 117-123.