THE BOUNDARY VALUE PROBLEM FOR QUASILINEAR PARABOLIC EQUATIONS WITH A LEVY LAPLACIAN FOR FUNCTIONS OF INFINITE NUMBER OF VARIABLES

Kovtun I.I.

National University of Life and Environmental Sciences of Ukraine, Geroiv Oborony 15, Kiev 03041 Ukraine

The Lévy Laplacian of $F(x)$ it the point x_{0} is defined (if it exists) by the formula [1] $\Delta_{L} F\left(x_{0}\right)=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n}\left(F^{\prime \prime}\left(x_{0}\right) f_{k}, f_{k}\right)_{H}$, where function $F(x)$ defined on the Hilbert space H is twice strongly differentiable at a point $x_{0}, \quad F^{\prime \prime}(x)$ is the Hessian of $F(x)$, and $\left\{f_{k}\right\}_{1}^{\infty}$ is an orthonormal basis in H.

Let $\bar{\Omega}=\Omega \cup \Gamma$ be a domain in $H, \Omega=\left\{x \in H: 0 \leq Q(x)<R^{2}\right\}, \Gamma$ is boundary and $\Gamma=\left\{x \in H: Q(x)=R^{2}\right\}$. The function $Q(x)$ is a twice strongly differentiable function such that $\Delta_{L} Q(x)=\gamma, \quad \gamma>0$ is positive constant. Consider the function $T(x)=\frac{R^{2}-Q^{2}}{\gamma}$ possesses the following properties $0<T(x) \frac{R^{2}}{\gamma}, \quad \Delta_{L} T(x)=-1$ if $x \in \Omega$, and $T(x)=0$ if $x \in \Gamma$. Let in a certain functional class \mathcal{F} exists a solution of the boundary value problem for the heat equations $\frac{\partial V(t, x)}{\partial t}=\Delta_{L} V(t, x), \quad V(t, x)=G(t, x) \quad$ on Γ, where $G(t, x)$ is a given function defined on H.

Consider the boundary value problem [2]

$$
\begin{gather*}
\frac{\partial U(t, x)}{\partial t}=\Delta_{L} U(t, x)+f_{0}(U(t, x)) \tag{1}\\
U(t, x)=G(t, x) \quad \text { on } \Gamma \tag{2}
\end{gather*}
$$

where $U(t, x)$ is a function on $[0, \mathcal{T}] \times H, \quad f_{0}(\xi)$ is a given function of one variable and exist both primitive $\varphi(\xi)=\int \frac{d \xi}{f_{0}(\xi)}$ and its inverse function φ^{-1}.

Then solution of the boundary value problem (1), (2) is given by the equation

$$
U(t, x)=\varphi^{-1}(T(x)+\varphi(V(t, x))),
$$

where $V(t, x)$ is the solution of the boundary value problem for the heat equations.

References

1. Lévy P. Problèmes concrets d'analyse fonctionnelle. Paris: Gauthier-Villars, 1951.
2. Feller M. N., Kovtun I. I. Quasilinear parabolic equations with a Lèvy Laplacian for functions of infinite number of variables, Methods of functional analysis and topology. Volume 14. Number 2, 2008, PP. 117-123.
