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The Lévy Laplacian of F(x) it the point x0 is defined (if it exists) by the formula [1]
∆LF(x0) = limn→∞

1
n

∑n
k=1(F

′′(x0)fk, fk)H , where function F(x) defined on the Hilbert space
H is twice strongly differentiable at a point x0, F ′′(x) is the Hessian of F(x), and {fk}∞1
is an orthonormal basis in H .

Let Ω = Ω ∪ Γ be a domain in H , Ω = {x ∈ H : 0 ≤ Q(x) < R2}, Γ is boundary and
Γ = {x ∈ H : Q(x) = R2}. The function Q(x) is a twice strongly differentiable function
such that ∆LQ(x) = γ, γ > 0 is positive constant. Consider the function T (x) = R2−Q2

γ

possesses the following properties 0 < T (x)R
2

γ
, ∆LT (x) = −1 if x ∈ Ω, and T (x) = 0

if x ∈ Γ. Let in a certain functional class F exists a solution of the boundary value problem
for the heat equations ∂V (t,x)

∂t = ∆LV (t, x), V (t, x) = G(t, x) on Γ, where G(t, x) is a
given function defined on H .

Consider the boundary value problem [2]

∂U (t, x)
∂t

= ∆LU (t, x) + f0(U (t, x)), (1)

U (t, x) = G(t, x) on Γ, (2)

where U (t, x) is a function on [0, T ] × H , f0(ξ) is a given function of one variable and
exist both primitive ϕ(ξ) =

∫ dξ
f0(ξ)

and its inverse function ϕ−1.
Then solution of the boundary value problem (1), (2) is given by the equation

U (t, x) = ϕ−1(T (x) + ϕ(V (t, x))),

where V (t, x) is the solution of the boundary value problem for the heat equations.
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