Русский
!

Conference publications

Abstracts

XXV conference

Perturbations of the wave equation which has the finite time extinction

Lyulko N.A.

Novosibirsk State University, Sobolev Institute of Mathematics, Russia, 630090, Novosibirsk, prosp. Koptyuga, 4, Phone: 8-9231979374, E-mail: natlyl@mail.ru

1 pp. (accepted)

In the semi-strip $\Pi=(0,1)\times (0,\infty)$ we consider the initial-boundary value problem for the wave equation in the

one-dimensional case

\begin{equation}

\label{eq:lyl1}

u_{tt}-a^2u_{xx}=0, \qquad (x,t)\in \Pi.

\end{equation}

The solution $u$ to this problem fulfills the boundary conditions

\begin{equation}

\label{eq:lyl2}

u(0,t)= p(u_t+au_x)(0,t), \qquad(u_t+au_x)(1,t)=0 \qquad t>0,

\end{equation}

or

\begin{equation}

\label{eq:lyl3}

u(1,t)= q(u_t-au_x)(1,t), \qquad(u_t-au_x)(0,t)=0 \qquad t>0,

\end{equation}

and the initial data at $t=0$, namely

\begin{equation}

\label{eq:lyl4}

u(x,0)= u_0(x), \qquad u_t(x,0)=u_1(x), \qquad x\in[0,1].

\end{equation}

Here is $a>0$ and $p,q$ are arbitrary constants. In \cite{Lyl} it is proved that the finite time extinction for problems \eqref{eq:lyl1}, \eqref{eq:lyl2}, \eqref{eq:lyl4} and \eqref{eq:lyl1}, \eqref{eq:lyl3}, \eqref{eq:lyl4} equals $T=\dfrac{2}{a}$. A similar example in the case $p=0$ is given in

\cite{Bal}.

In \cite{Lyl} along with the equation \eqref{eq:lyl1} we consider its perturbed version, namely

\begin{equation}

\label{eq:lyl5}

u_{tt}-a^2u_{xx}+c(x,t)u=0, \qquad (x,t)\in \Pi,

\end{equation}

where $c(x,t)$ is a two times continuously differentiable function such that $c(x,t)$ itself and its first order and second order derivatives are bounded in $\overline{\Pi}$. In \cite{Lyl} it is proved that for any initial functions $u_0\in L_2(0,1)$, $u_1\in W_2^1(0,1)$ the solutions to problems \eqref{eq:lyl5}, \eqref{eq:lyl2}, \eqref{eq:lyl4} and \eqref{eq:lyl5}, \eqref{eq:lyl3}, \eqref{eq:lyl4} become continuously differentiable in a finite time. Moreover, if $sup_{x,t\in \overline{\Pi}}(\sum_{0\le \alpha+\beta\le 2}|D^{\alpha,\beta}_{x,t}c(x,t)|)$ is small, then the problems \eqref{eq:lyl5}, \eqref{eq:lyl2}, \eqref{eq:lyl4} and \eqref{eq:lyl5}, \eqref{eq:lyl3}, \eqref{eq:lyl4} are exponentially stable in $L_2(0,1)$

\begin{thebibliography}{100}

\bibitem{Lyl} \textit{Kmit I.Y., Lyulko N.A.} Asymptotic behavior of solutions to perturbed superstable wave equations// \textit{J. Phys.: Conf. Series} \textbf{894}, 012056, 2017.

\bibitem{Bal} \textit{Balakrishnan A.V.} Superstability of systems// \textit{J. Appl. Math. and Comput.} \textbf{164}, \textbf{2}, 2005, p. 321-326.

\end{thebibliography}



© 2004 Designed by Lyceum of Informational Technologies №1533