English
!

Архив публикаций

Тезисы

XXV-ая конференция

Гибридная разностная схема для линейного уравнения переноса с обобщенной аппроксимацией

Миров Ф.Х., Лобанов А.И.

Московский физико-технический институт (государственный университет)

1  стр. (принято к публикации)

Выбор разностной схемы во многом определяет свойства и эффективность вы-числительного алгоритма в целом. Важную роль при этом, особенно для сквозного рас-чета разрывных решений, имеют свойства монотонности схемы. Это существенно при численном моделировании разрывных решений.

Для решения задач рассматривается задача для уравнения переноса:

∂u/∂t + a∙∂u/∂x = 0, (1)

с разрывными начальными условиями и условиям периодичности.

В соответствие (1) ставится линейный относительно коэффициентов схемы функ-ционал. Построенный функционал для гладких решений обеспечивает выполнение условий аппроксимации на гладких решениях (1), но свободен от ограничений на гладкость функции и требует только существования преобразования Фурье начальных условий. Проводится анализ схемы в пространстве неопределенных коэффициентов, введенном в [1].

Гибридная разностная схема построена на основе решения задачи условной ми-нимизации функционала. Проведены тестовые расчеты. Свойства построенной разно-стной схемы сравниваются с классической гибридной схемой Р.П. Федоренко [2].

Литература

1. Магомедов К.М., Холодов А.С. Сеточно-характеристические численные методы. – М.: Наука, 1988.- 290 cтр.

2. Р. П. Федоренко, “Применение разностных схем высокой точности для численного решения гиперболических уравнений”, Ж. вычисл. матем. и матем. физ., 2:6, 1962. 1122–1128 стр.



© 2004 Дизайн Лицея Информационных технологий №1533